澎湃新闻记者 贺梨萍
10月28日,《麻省理工科技评论》亚太地区“35岁以下科技创新35人”榜单在浙江省杭州市未来科技城揭晓,其中20位来自中国。这是该榜单首次正式落地中国,旨在为极具发展潜质的青年科技人才提供多元化的国际发展平台,让引进来和走出去的亚太科技成果再添新章。
澎湃新闻(www.thepaper.cn)记者了解到,这一榜单中的年轻人们或是高科技企业的创新领袖,或是来自各地高校的科研佼佼者,覆盖生命科学、人工智能、能源环境、先进材料等新兴科技领域。
入选代表有专注于研究肿瘤坏死因子受体的激活机制的浙江大学药学院研究员、博士生导师潘利强,研制出可替代钢材的超级木材以及低成本、高性能的木基电池和太阳能蒸发器,用以促进环境友好型发展,解决迈向碳中和过程中面临的材料-能源-环境问题的武汉大学教授陈朝吉等人。
《麻省理工科技评论》成立于1899年,是世界上历史最悠久的科技商业智库与媒体之一。自1999年起,《麻省理工科技评论》每年都评选出35位35岁以下的青年科技创新人才,从世界范围内的前沿科学、新兴技术、创新应用中遴选出对未来的科技发展产生深远影响的创新领军人物,涵盖但不限于生物技术、 能源材料、人工智能、信息技术、智能制造等新兴技术领域。
2010年,“35岁以下科技创新35人”首次进行区域性评选,一跃成为亚太、欧洲以及拉丁美洲等多个国家和地区科技青年群体的重要标尺。2021年,“35岁以下科技创新35人”亚太区正式落地中国。此外,2017年,中国区榜单首次发布,截至去年已连续发布四次。
以下为2021年“35岁以下科技创新35人”亚太区名单(排名不分先后):
他研制出可替代钢材的超级木材以及低成本、高性能的木基电池和太阳能蒸发器,用以促进环境友好型发展,解决迈向碳中和过程中面临的材料 - 能源 - 环境问题。
陈朝吉现为武汉大学资源与环境科学学院教授。加入武汉大学之前,他于 2017 年至 2021 年 5 月于马里兰大学帕克分校胡良兵教授课题组从事博士后研究工作,研究方向为木材基生物质材料的多尺度结构设计、功能化及高附加值循环利用,以解决材料、能源与环境的可持续发展问题,并最终在轻质结构材料、储能、环境修复、柔性电子设备和生物塑料五个方向取得多个创新突破。
作为团队核心成员之一,他参与开发了一种超级木材,强度与钢铁一样高,密度却只有钢铁的六分之一。这种轻质高强材料在轻量化汽车、节能建筑领域具有巨大的应用潜力,有望部分替代高耗能、高密度的钢材结构材料。
在绿色能源领域,他通过开发一系列高容量、低成本木基电池和超级电容器,为高性能、低成本、大规模储能提供了一种环保且可持续的策略。在环境水处理领域,他开发了 3D 木材膜材料用于水过滤及海水淡化,通过木基材料的双峰孔结构工程有效解决了该领域长期存在的盐积聚问题。
另外,他还研制了绿色环保木材基多功能器件和可降解生物塑料,展示了木材在功能器件领域的潜力。这些材料有望部分替代广泛应用的化石基不可降解塑料。
他凭借其独特的机械工程背景,为凝血疾病的诊断、治疗和控制寻找更好的解决方案。
通过将血流背后的机械力与其对血液蛋白和凝血细胞的影响联系起来,居理宁致力于为凝血疾病的诊断、治疗和控制找到更好的解决方案。他深耕的研究领域被称为 “ 机械生物学 ”。
居理宁致力于使用力学知识和工程技术在单分子层面上解决心血管生物力学问题,他发明了一种名为生物膜力学探针(Biomembrane Force Probe,BFP)的纳米工具,能够在单分子水平上实时监测膜蛋白受体动力学,并捕捉细胞内瞬时发生的信号,一改传统单细胞力学生物学研究中所使用的非实时性、求群体平均值的方法,实现在活细胞上同步获取力谱和钙离子信号,并将该单分子技术用于研究血小板在复杂血流动力学微环境下产生血栓的机制。
之后,居理宁又不断地对这项开创性技术进行升级。为了在具有动态血流的生理背景下进一步开展血栓力学生物学研究,他利用其他尖端技术对 BFP 进行了补充,构建了 4Ms 策略:力学(Mechanics)、显微镜(Microscopy)、微制造(Microfabrication)和小鼠模型(Mouse model),该方法集成了生物力学工程、成像、微流体和分子生物学。
通过对一系列机械感应(力感应)蛋白质的世界领先发现,以及了解血细胞如何利用这些机械力传感器来感应循环系统中的力学信号,居理宁已经开发出新的治疗策略,能够及早有效地预防和干预血栓的形成。
他开发仿人脑视觉皮层的机器学习机制,并应用到人脸识别相关的安全防控中,使用AI系统帮助人类打造一个更安全的世界。
人脑的视觉皮层非常强大。一个物体,只需看上几眼,人脑就可以快速处理视觉信息并识别物体 —— 任何人造机器的速度和精度都无法与之匹敌。
在剑桥大学攻读博士学位以来,Skylark Labs 的创始人兼首席执行官 Amarjot Singh 一直在进行人脑视觉皮层的研究。他致力于开发基于最优深度学习模型的类人类学习机制,使其在数据处理、内存使用率和计算资源利用方面更为高效。
2018 年,他发明了一种名为 “ ScatterNet Hybrid Deep Learning (SHDL) ” 的高效混合计算架构。该架构模拟人脑视觉皮层的机制来优化传统的大型深度网络,可以从有限的标记样本中学习有意义的信息,并以计算高效且内存占用低的方式工作,使其成为构建实用 AI 系统的理想选择。
“在印度成长的经历让我意识到人们每天面临着许多人身安全问题,尤其是女性,” Amarjot 说,“ 这对我产生了很大的影响,并促使我开发人工智能技术(混合网络框架)来应对这些挑战。”
他的公司还积极参与了一系列运用人脸识别技术解决现实生活中重大问题的项目,例如打击印度儿童贩卖的 CENSER 儿童救援系统,帮助叙利亚难民家庭成员重聚的面部识别系统,这些努力均致力于让世界变得更安全。
她开发了一系列新颖的分子振动光谱成像技术来原位获取生物分子信息,通过实现亚细胞水平的功能成像来应对生命科学中无标记成像的挑战。
李炫祯开发了一系列新颖的分子振动光谱成像技术来原位获取生物分子信息,通过实现亚细胞水平的功能成像来应对生命科学中无标记成像的挑战。这些技术发展有助于解决神经科学、细胞代谢和肿瘤学方面的问题。
她建立了一种新的无标记电压成像技术来跟踪神经活动,创新设计了一种高速受激拉曼成像方法,可直接测量膜的分子特性。这项新技术极大地提高了灵敏度和特异性,因此被用于在没有任何荧光标记的情况下在单个哺乳动物神经元中展示单次动作电位成像。作为该领域的首创,这一成果在生物光子学、生物物理学和生命科学等多个研究领域产生了重大影响。
这种成像技术创新启发了其他研究小组进行后续研究。它被认为是一项开创性的研究,也是新成像方法的代表性例子之一。
他致力于开发新的蛋白质设计方法,并设计可与天然蛋白质相互作用的人工设计结合蛋白,这些结合蛋白有望替代抗体成为新一代蛋白质药物以用于调节免疫反应、治疗癌症和杀死病毒。
曹龙兴开发了一种蛋白质从头设计新方法,可针对自然界中的任意蛋白质的特定靶点设计结合蛋白,这种方法除了目标的三维结构外,不需使用任何其它信息。
为了证明他的研究具有非常广泛的适用性,曹龙兴及其同事针对 12 种重要的自然界蛋白质靶标设计了结合蛋白,这些蛋白质靶标具有截然不同的表面形状和物理化学特性。生物物理实验验证表明,这些结合蛋白非常稳定,能够以纳摩尔至皮摩尔级的亲和力结合其靶标。对于其中所获得的五种复合物晶体结构,其计算模型与晶体结构完美匹配。这种新方法能用于开发新一代的蛋白质药物,在各种疾病的诊断与治疗应用中具有极大的潜力。
在新冠疫情大流行期间,曹龙兴成功对蛋白抑制剂进行从头设计,使其能够以皮摩尔级亲和力与新冠病毒刺突蛋白结合并阻止病毒感染细胞。此外,曹龙兴的抑制剂是针对病毒刺突蛋白最保守的区域设计的,它们能对现有的各种变异毒株保持高效力,并可应对未来病毒的持续突变和进化。
蛋白质从头设计可以用于新型药物、催化剂和材料的精确设计,并对我们人类在 21 世纪医学、能源和技术方面所遇到的各种挑战提供新的解决方案。
他构建的三维柔性生物电子器件可在微米到厘米尺度上监测与治疗人体器官,解决了电子器件与生物组织的界面失配问题,推助生命健康与智慧医疗发展。
韩梦迪致力于解决电子器件与生物组织的界面失配问题,他发明的柔性、三维电子器件可对生命体系进行长期、实时、连续的监测,为医疗大数据提供硬件基础,推动生物医疗信息的数字化,最终实现信息技术与生物技术的交叉融合。
针对皮肤、大脑、心脏等厘米尺度的器官,韩梦迪开发了转印工艺,可以将多模态、阵列化的电子器件转移至任意三维柔性曲面,实现电子器件与生物组织在模量、形貌、功能等多方位的匹配;针对细胞、组织、类器官等微米尺度的生命体系,他开发了三维组装工艺,可以并行化地将传统平面器件转化为三维立体结构,实现微尺度下电子器件与生物组织的几何形貌匹配。
他构建的一系列三维生物电子器件,尺寸从微米量级跨度至厘米量级,能够与不同类型的生物组织形成良好的界面,助力生物医学检测与治疗。他的加工方法具有并行化的特点,适于批量生产。这些跨尺度三维生物电子器件可以作为生物医疗大数据与人工智能的硬件基础,以微创诊疗器械、器官芯片、可穿戴设备等形式服务于生命健康领域。
他专注于开发和设计基于硅量子点的自旋量子比特,实现了双量子点量子比特的高温控制。
杨智寰于 2015 年实现了双量子点的量子比特设计和制造,于 2019 年开发新技术突破自旋量子态的存活时间限制,实现长时间存在的高保真度量子比特,打开了硅量子器件阵列化组成量子计算机的大门。
2020 年,他通过对材料系统的精细控制,实现了双量子点量子比特的高温控制(温度为 1.5K),将 “ 热 ” 量子比特带入了硅基 MOS 世界,为操作量子计算机复杂电路的正常运行提供了温度条件,这对量子计算来说将是决定性的技术。杨智寰的这两项技术都能够将硅量子点打造成开发大型量子计算机的主流技术。
2014 年,杨智寰于澳大利亚新南威尔士大学获电子工程学博士学位后,便长期留任新南威尔士大学开展研究工作,期间他曾与美国国家标准与技术研究院(NIST)和英国剑桥大学进行过短期研究合作。
她创新性地将非线性纳米光学和拓扑光学理论结合,应用于光学拓扑结构和器件的研究。
Daria Smirnova 专注于非线性纳米光学和拓扑光学理论,并将二者结合、聚焦于纳米尺度的光学拓扑结构和器件的研究,投入高效光能转换创新性研究。
Daria 创造了一种使用高折射率介电材料制成的纳米结构的概念框架。通过辅以精心设计的共振元件和晶格排列,她展示了在现实中实现光拓扑结构的特殊前景。
她和同事开发了一套全新的方法,可用于光子晶体的光学拓扑相表征,能够更方便地获得光学系统的拓扑性质,提供了一种不需要低温或强相互作用条件就可以简单实现光学拓扑态的方法。
此外,Daria 还将她的理论转化为应用,开发了多种纳米光学拓扑器件原型,有望应用于光子学领域和量子计算领域。
Daria 于 2015 年在澳洲国立大学获得物理学博士学位,随后分别以博士后、DECRA 研究员的身份在澳洲国立大学非线性物理研究中心开展研究至今。
他专注于研究肿瘤坏死因子受体的激活机制,其成果为肿瘤免疫治疗提供全新的研究思路并可用于开发靶向药物。
潘利强的研究聚焦于肿瘤坏死因子受体(TNFR)的激活机制,以及相关靶向药物的开发。其中包括新型多功能配体(如 TRAIL、APRIL)或抗体衍生物(如配体/抗体偶联药物、多特异性抗体)等。
通过对肿瘤坏死因子受体超家族成员(TNFRSF)之一的死亡受体 5(Death Receptor 5,DR5)跨膜区进行系统的结构和生物学功能研究,潘利强与合作者共同发现了受体中跨膜螺旋(TMH)单体能通过聚簇来直接驱动信号传导,并推导出 DR5 胞外区在配体结合前应处于自抑制状态。他的研究廓清了 DR5 被特异性激活的机制,为那些正在开发通过激活 DR5 或 TNFR 超家族其他成员的癌症免疫治疗提供了新的思路。
为解决多特异性抗体的异源匹配问题,潘利强与合作者进一步设计并开发了一种可即时精准制备自组装多特异性抗体的 NAPPA 平台技术,并作为科学创始人联合创立了以 NAPPA 平台技术为核心的生物制药公司 Assembly Medicine Inc.,进一步将该技术应用于面向未来的个性化肿瘤免疫治疗及多特异性抗体药物等新型生物药物的研发。
他将物理材料与计算机、机器人技术相结合,创造无缝的有形交互体验。
用户界面(UI)是人类与电子设备背后的数字世界沟通的重要桥梁。在过去数十年里,有形用户界面(TUI)已成为一种新颖的增强型 UI,可以更有效地连接物理世界和数字世界。
Ken Nakagaki 在麻省理工学院媒体实验室(MIT Media Lab)媒体艺术与科学专业拿到了博士学位,即将担任芝加哥大学助理教授。自 2014 年以来,他一直致力于研究 TUI 的未来,特别是 TUI 与动态驱动和能力转换的结合 —— 这又被称为 “ 受驱动的有形用户界面(Actuated Tangible User Interfaces,A-TUI)”。A-TUI 旨在以物理方式传达数字信息并通过制动(例如形状变化和运动)动态适应交互。
Ken 的研究专注于将物理材料与计算和机器人技术相结合,以创造无缝的有形交互体验,其中包括三个主要研究方向:硬件形式、感知设计和被动材料激活。
Ken 此前的研究成果,如 LineFORM 和 ChainFORM,是对 “ 线形材料”(如弦、绳索和电线)交互性的探索。他设计了可以形变的 A-TUI 的原型产品,制作出了灵活的模块化蛇形电子设备和显示器。
第二个关键部分是将人因工程和感知设计技术集成到硬件设备中。Ken 表示自己开发了一套交互系统,通过触摸和制动来营造新颖的认知体验,以丰富数据的物理化,还可用于娱乐。
Ken 的第三个研究方向是被动材料激活,这也是他的博士研究方向。他将这个概念定义为“机械外壳”,主要研究我们周围物理环境中的被动物体,可以如何被激活、与其它被动系统“对接”并对交互做出反应。
“ 我想将我的想法和愿景带入真实的‘可体验’原型中。通过此类研究,我希望揭示物理环境中新的交互机会,以物理表达并动态响应人类交互。我相信这种前沿的研究范式可以真正推动我们与计算机和物体互动的方式,” Ken 表示。
2022 年,Ken 将成为芝加哥大学助理教授,建立自己的实验室,名为 Actuated Experience Lab,以进一步研究他的愿景。
从地下到太空,他利用等离子资源和技术来应对下一代人面临的挑战。
Lim Jian Wei Mark 是新加坡太空技术初创公司 Aliena 的首席执行官。该公司主要开发先进的等离子体推进发动机,为卫星运营商提供更经济的解决方案。
“ 随着我在科研领域的深入,最让我着迷的是我们如何利用等离子资源来应对下一代面临的挑战,” Mark 表示。
Aliena 公司的成立始于 Mark 在南洋理工能源研究所(ERI@N)担任研究科学家时参与的一个项目。在整个项目过程中,Mark 负责开发部署在纳米卫星上的等离子推进系统的系统固件。2018 年,Aliena 公司从南洋理工大学独立出来,自此诞生。
作为博士研究的一部分,Mark 开发了一种用于纳米卫星的新型微型等离子推进器,其设计独特(新型离子发动机)可以在小于 5W 的功率下运行,打破了最低功率纪录。该设计还延长了系统的使用寿命并解决了侵蚀问题。2019 年,南洋理工卫星研究中心(SaRC)对该项发明背后的物理概念进行了测试和验证,并预计将于 2022 年在太空中进行在轨试验。
据 Mark 介绍,Aliena 在 2019 年筹集了超额认购的种子投资轮,其工程团队和产品线正在迅速扩大,以适应卫星公司日益增长的需求。
她的研究为嵌入式与信息物理系统的验证做出了奠基性贡献,展示了该技术应用于工业系统的可能性。
范楚楚的博士论文研究被 ACM 评审委员会称作是 “ 为嵌入式与信息物理系统的验证做出了奠基性贡献,且展示了该技术应用于工业系统的可能性。”
她的主要研究内容是用形式化方法、机器学习与控制论等严谨的数学理论来设计、分析与验证安全自动控制系统。她聚焦于非线性系统的灵敏度分析,以及如何结合程序和动态的物理实体。
她使用机器学习算法学习灵敏度分析,然后用灵敏度分析检查系统安全性问题。她的解决方案将数值模拟数据、基于物理实体的符号灵敏度分析以及软件验证的核心方法(如等效性检查和定点分析)结合在一起。
范楚楚提出一个基于灵敏度分析、用于非线性混合系统有界验证的数据驱动算法,并成立初创公司将该方法商业化。在此基础上,她开发出 DryVR 验证工具,目前已应用在智能辅助驾驶系统、基于神经网络的控制器、分散式机器人以及医疗设备中,并首次对丰田的系统进行了验证,近期又应用在城市空中交通管理场景的模拟验证中。她还提出了一种 RealSyn 方法,为自动驾驶汽车的实时运动规划算法奠定了基础。
他致力于开发尖端的全量子计算模拟方法,为物理学、化学、生物学、能源和环境科学中的基础和跨学科问题提供理论视角,特别是在凝聚态物理和新材料领域提供模拟复杂过程的有利计算方法。
陈基致力于开发尖端的全量子计算模拟方法,为物理学、化学、生物学、能源和环境科学中的基础和跨学科问题提供理论视角。
陈基与合作者一起,以量子原理揭示了水中铵离子的水合结构和动力学。该研究为铵筛纳米膜的设计与制作提供了重要的理论指导,为高效的水净化和经济的全球供水铺平了道路。
他精确地计算了二氧化钛的电子结构,并首次揭示了氧空位在单重态自旋态下的真实基态以及水分解效率与衬底电子态的理论关系。基于二氧化钛的研究,陈基与同事一起提出了高效水分解太阳能电池的设计方法,为清洁能源的研究提供指导性思路。
除此之外,陈基在凝聚态物质和材料的全量子物理领域也做出了重要贡献,其中研究液氢中的核量子效应以及准确预测二维冰的结构都是该领域的开创性工作。
陈基于 2014 年在北京大学物理学院获得博士学位,之后相继在英国伦敦大学学院、德国马克思普朗克固体研究所做博士后研究员,2018 年回国任教于北京大学。
他开发了利用各种功能性生物材料进行癌症免疫治疗的新策略。
汪超专注于癌症免疫治疗领域的新兴生物技术。他通过利用各种功能性生物材料开发了针对癌症的免疫疗法的新策略。
在攻读博士学位期间,汪超首次发现基于纳米材料的肿瘤光热疗法结合免疫检查点阻断疗法可以产生协同效应,有效抑制体内残留肿瘤细胞的生长和转移。相关工作帮助推动了全球多个团队在该方向的后续研究。
汪超在博士后期间开发了多种用于递送免疫检查点抑制剂的药物递送载体,包括微针贴片、凝胶和细胞载体,目前正在临床转化。
自 2018 年成为 PI 以来,汪超致力于利用细胞来源的新型生物材料,作为药物递送系统以提高肿瘤免疫治疗的疗效和减少免疫相关副作用。此外,汪超还开发了基于生物材料的局部/靶向和联合治疗策略,用于增强癌症免疫治疗,在临床实践中很有前景。
他开发的新技术或将让化学工业摆脱化石资源的束缚,